Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition.

نویسندگان

  • M Miyazaki
  • Y Hitomi
  • T Kizaki
  • H Ohno
  • S Haga
  • T Takemasa
چکیده

Skeletal muscle is highly adaptable, being capable of undergoing changes in its structural and functional properties in response to physiological stimuli. The fast-to-slow muscle fiber-type transition is evoked by increased motor nerve activity. Recently, the calcineurin (CaN) signaling pathway has been implicated in the transcriptional regulation of slow muscle fiber genes. Here we investigated the effect of treatment with a CaN-specific inhibitor, FK506, on skeletal muscle fiber-type transition in functionally overloaded muscles. The overloaded plantaris muscle showed fast-to-slow muscle fiber type transition, i.e., a decrease in myosin heavy chain (MHC) IIb, an increase in MHCIIa+d/x, and new expression of MHCI. In the FK506-administered group, however, overload-induced muscle fiber-type transition was completely prevented. We have demonstrated, therefore, that the CaN signaling pathway is required for fast-to-slow skeletal muscle fiber-type transition. Furthermore, we also confirmed that the protein expression levels of downstream effectors of CaN signaling exhibit a transient increase in the early phase of the overloaded condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر یک دوره تمرین مقاومتی بر بیان اینترلوکین-6 و RCAN-1 در عضله اسکلتی موشهای صحرایی دیابتی شده با استروپتوزوسین

Background: Myokines released from skeletal muscle have multiple metabolic and hypertrophic effects. On the other hand, one of proposed pathways for effects of exercise training on metabolic diseases is calcineurin signaling pathway. With considering to relation between interleukin-6 (IL-6) and calcineurin, the purpose of this study was to investigate whether the resistance training has an effe...

متن کامل

Pathophysiology of Skeletal Muscle Loss Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload

Fajardo VA, Rietze BA, Chambers PJ, Bellissimo C, Bombardier E, Quadrilatero J, Tupling AR. Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload. Am J Physiol Cell Physiol 313: C154–C161, 2017. First published June 7, 2017; doi:10.1152/ajpcell.00291.2016.—Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca -ATPases...

متن کامل

Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy.

The serine/threonine phosphatase calcineurin is an important regulator of calcium-activated intracellular responses in eukaryotic cells. In higher eukaryotes, calcium/calmodulin-mediated activation of calcineurin facilitates direct dephosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T-cells (NFAT). Recently, controversy has surrounded the role of ...

متن کامل

Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload.

Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), stimulates calcineurin signaling to enhance skeletal muscle oxidative capacity. Some studies have shown that calcineurin may also control skeletal muscle mass and remodeling in response to functional overload and unload stimuli by increasing myofiber size and the proportion of slow fibers. To ...

متن کامل

Matching of Calcineurin Activity to Upstream Effectors Is Critical for Skeletal Muscle Fiber Growth

Calcineurin-dependent pathways have been implicated in the hypertrophic response of skeletal muscle to functional overload (OV) (Dunn, S.E., J.L. Burns, and R.N. Michel. 1999. J. Biol. Chem. 274:21908-21912). Here we show that skeletal muscles overexpressing an activated form of calcineurin (CnA*) exhibit a phenotype indistinguishable from wild-type counterparts under normal weightbearing condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 2004